$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY - CH1

SUMMER 2014 MARK SCHEME

SECTION A

Q. $1 \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
Q. 2 carbon-12 $/{ }^{12} \mathrm{C}$
Q. 3 any example e.g.
iron for Haber process / manufacture of ammonia vanadium(V) oxide in Contact process / manufacture of sulfuric acid platinum / palladium / rhodium in catalytic converters / to remove toxic gases from exhaust fumes
nickel in hydrogenation of alkenes / unsaturated oils
Q. $4 \quad$ (a) $\quad M_{r}=286.2 \quad$ allow 286
(b) mass $=\frac{286.2 \times 0.1}{4}=7.155 / 7.16 \quad$ allow $7.15 / 7.2$ based on 286
Q. 5 enthalpy changes $=-110$
Q. $6 \quad{ }_{90}^{234} \mathrm{Th}$ (1) $\quad{ }_{91}^{234} \mathrm{~Pa}(1)$ (award 1 mark for 2 correct symbols)
[2]
Q. 7 portion to right of Ea a_{1} labelled as molecules that react / shaded
$E a_{2}$ marked, at lower energy than $E a_{1,}$ and portion to right labelled as molecules that react / shaded

SECTION B

Q. 8 (a) same number of protons and electrons (1)

0,1 and 2 neutrons (1)
(b) (i) 3 energy levels between $\mathrm{n}=2$ and $\mathrm{n}=\infty$ becoming closer together first gap must be < that between $\mathrm{n}=1$ and $\mathrm{n}=2$
(ii) any arrow pointing upwards (1)
from $\mathrm{n}=1$ to $\mathrm{n}=\infty$ (1)
(c) (i) visible
(ii) (not correct because) Balmer series corresponds to energy transitions involving $\mathrm{n}=2$ (1)
for ionisation energy need Lyman series / energy transitions involving $\mathrm{n}=1$ (1)
(d) (i) $\quad Q(g) \rightarrow Q^{+}(g)+e / a c c e p t ~ a n y ~ s y m b o l ~$
(ii) Group 6
(iii) $\quad \ln T$ there is more shielding (1)

The outer electron is further from the nucleus (1)
The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1)

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC
Q. 9 (a) (i) line drawn that is deflected less by magnetic field
[1]
(ii) increase strength of the magnetic field allow decrease charge on charged plates
(b) (i) $1+(1)$
${ }^{37} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$ (1) $\quad{ }^{37} \mathrm{Cl}_{2}{ }^{+}(2)$
[2]
(ii) line drawn as $\mathrm{m} / \mathrm{z} 72$ (1)
ratio height 6 (1) allow $1 / 2$ square tolerance
[2]
(c) (i) $\quad \% \mathrm{H}=0.84$ (1)
$\mathrm{C}: \mathrm{H}: \mathrm{Cl}=10.04 / 12: 0.84 / 1.01: 89.12 / 35.5$ (1)
$=0.84: 0.83: 2.51=1: 1: 3$ empirical formula $=\mathrm{CHCl}_{3}$ (1) [3]
(ii) the relative molecular mass / $M_{r} /$ molar mass
(iii) right hand / largest / heaviest m / z peak from mass spectrum
Q. 10 (a) (a reaction in which) the rate of the forward reaction is equal to the rate of the backward reaction
(b) goes darker / more brown (1)
because the (forward) reaction has a $+\mathrm{ve} \Delta \mathrm{H} /$ is endothermic (1)
goes paler / less brown (1)
because there are more moles / molecules on RHS (1)
no change (because catalysts do not affect the position of an equilibrium) (1)
(c) (i) moles $\mathrm{N}_{2} \mathrm{H}_{4}=14000 / 32.04=437.0$
this produces $437.0 \times 3=1311$ moles of gas (1)
volume $=1311 \times 24=3.15 \times 10^{4} \mathrm{dm}^{3}(1) \quad$ [minimum 2 sf$]$
(ii) (large volume of) gas produced
(d) (i) an acid is a proton $/ \mathrm{H}^{+}$donor
(ii) $\quad \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) sulfuric acid is behaving as the acid / nitric acid is behaving as a base (1)
as it donates a proton / as it accepts a proton (1)
Q. 11 (a)
(i) $\quad 2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$ (state symbols needed) C(s) allowed as C(gr) or C(graphite)
(ii) (if these elements were reacted together) other products would form/ carbon does not react with hydrogen and oxygen under standard conditions
(b) (i) energy $=100 \times 4.2 \times 54=22680$
(ii) moles ethanol $=0.81 / 46=0.0176$ (1) energy change $=\underline{0.0176} \quad \Delta \mathrm{H}=-1290$
-ve sign and correct to 3 sf (1)
(c) internet value numerically larger (1)
heat losses / incomplete combustion / thermal capacity of calorimeter ignored (1) no credit for energy loss
(d) (i) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+4 \frac{1}{2} \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ (ignore state symbols)
(ii) negative enthalpy change means energy in bonds broken is less than that in bonds made
(iii) more bonds broken and made in propanol and therefore more energy released
(e) any 4 from:
both conserve carbon / non-renewable fuel sources / fossil fuels / use renewable sources
(these gas / liquid) suitable for different uses e.g. ethanol to fuel cars atom economy gasification is less (some C lost as CO_{2}) / CO_{2} produced in gasification is a greenhouse gas

CO is toxic
gasification at high temperature / enzymes need low temperature enzyme approach therefore saves fuel / gasification needs more energy

3 max if any reference to destruction of ozone layer
QWC
The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter (1)

Answer has suitable structure (1)
Q. 12 (a) to increase rate of reaction / to increase surface area
(b) $\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (ignore state symbols)
(c) rate starts fast and gradually slows (1)
because concentration becomes less so fewer collisions (per unit time) / less frequent collisions / lower probability of collisions (1)
at time $=17 / 18 \mathrm{~min}$ rate $=0$ (1)
(d) all the solid would all have disappeared / if more carbonate is added further effervescence is seen
(e) (i) volume $\mathrm{CO}_{2}=200 \mathrm{~cm}^{3}$

$$
\begin{array}{r}
\text { moles } \mathrm{CO}_{2}=200 / 24000=0.008333=\underset{[\text { minimum } 2 \mathrm{sf}]}{\text { moles } \mathrm{MgCO}_{3}} . \tag{1}
\end{array}
$$

(ii) mass $\mathrm{MgCO}_{3}=0.008333 \times 84.3=0.702 \mathrm{~g}$ (1)

$$
\begin{equation*}
\% \mathrm{MgCO}_{3}=\frac{0.702}{0.889} \times 100=79.0 \% / 79 \% \tag{2}
\end{equation*}
$$

(e) carbon dioxide is soluble in water / reacts with water (1)
volume collected less therefore \% / moles of MgCO_{3} less (1)
[2]
(f) use of 40.3 and 84.3 (1)
atom economy $=40.3 / 84.3 \times 100=47.8 \% ~(1)$

