

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY - CH1

SUMMER 2014 MARK SCHEME

SECTION A

Q.1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶			
Q.2	carbon-12 / ¹² C			
Q.3	any example e.g. iron for Haber process / manufacture of ammonia vanadium(V) oxide in Contact process / manufacture of sulfuric acid platinum / palladium / rhodium in catalytic converters / to remove toxic gases from exhaust fumes nickel in hydrogenation of alkenes / unsaturated oils	[1]		
Q.4	(a) $M_r = 286.2$ allow 286 [(b) mass = $\frac{286.2 \times 0.1}{4}$ = 7.155 / 7.16 allow 7.15 / 7.2 based on 286 [[1] [1]		
Q.5	enthalpy changes = –110 [[1]		
Q.6	²³⁴ Th (1) ²³⁴ Pa (1) (award 1 mark for 2 correct symbols) [90 91	2]		
Q.7	portion to right of Ea_1 labelled as molecules that react / shaded	[1]		

 Ea_2 marked, at lower energy than Ea_1 , and portion to right labelled as molecules that react / shaded [1]

Section A Total [10]

PMT

SECTION B

Q.8	(a)	same	same number of protons and electrons (1)				
		0, 1 a	nd 2 neutrons (1)	[2]			
	(b)	(i)	3 energy levels between n = 2 and n = ∞ becoming closer together first gap must be < that between n = 1 and n = 2	[1]			
		(ii)	any arrow pointing upwards (1)				
			from n = 1 to n = ∞ (1)	[2]			
	(c)	(i)	visible	[1]			
		(ii)	(not correct because) Balmer series corresponds to energy transition involving n = 2 (1)	ons			
			for ionisation energy need Lyman series / energy transitions involvi $n = 1$ (1)	ng [2]			
	(d)	(i)	$Q(g) \rightarrow Q^{*}(g) + e / accept any symbol$	[1]			
		(ii)	Group 6	[1]			
		(iii)	In T there is more shielding (1)				
			The outer electron is further from the nucleus (1)				
			The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1)	[3]			
			Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC	[1]			
			Total	[14]			

PMT

Q.9	(a)	(i)	line drawn that is deflected less by magnetic field		[1]
		(ii)	increase strength of the magnetic field allow decrease charge on charged plates		[1]
	(b)	(i)	1+ (1)		
			³⁷ Cl - ³⁷ Cl (1)	³⁷ Cl ₂ ⁺ (2)	[2]
		(ii)	line drawn as m/z 72 (1)		
			ratio height 6 (1)	allow 1/2 square tolerance	[2]
	(c)	(i)	% H = 0.84 (1)		
			C: H: CI = 10.04 / 12: 0.84 / 1.01: 89.12 / 35.5 (1)		
			= 0.84 : 0.83 : 2.51 = 1 : 1 : 3 empirical formula = CHCl ₃ (1) [[3]
		(ii)	the relative molecular mass / <i>M</i> _r / molar mass		[1]
		(iii)	right hand / largest / heaviest m/z peak from mass spectrum [1		[1]

Total [11]

Q.10	(a)	(a reaction in which) the rate of the forward reaction is equal to the r of the backward reaction					
	(b)	goes darker / more brown (1)					
		becaus	se the (forward) reaction has a +ve ΔH / is endothermic (1)				
		goes p	paler / less brown (1)				
		because there are more moles / molecules on RHS (1)					
		no cha	ange (because catalysts do not affect the position of an equilibrium)	(1) [5]			
	(c)	(i)	moles $N_2H_4 = 14000/32.04 = 437.0$ (1)				
			this produces $437.0 \times 3 = 1311$ moles of gas (1)				
			volume = $1311 \times 24 = 3.15 \times 10^4 \text{ dm}^3$ (1) [minimum 2 sf]	[3]			
		(ii)	(large volume of) gas produced	[1]			
	(d)	(i)	an acid is a proton / H^+ donor	[1]			
		(ii)	$\rightarrow NO_2^- + H_3O^+$	[1]			
		(iii)	sulfuric acid is behaving as the acid / nitric acid is behaving as a base (1)				
			as it donates a proton / as it accepts a proton (1)	[2]			

Total [14]

Q.11 (a)(i) $2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$ (state symbols needed)[1]C(s) allowed as C(gr) or C(graphite)[1](ii)(if these elements were reacted together) other products would form/
carbon does not react with hydrogen and oxygen under standard
conditions[1]

(b) (i) energy =
$$100 \times 4.2 \times 54 = 22680$$
 [1]

(ii) moles ethanol =
$$0.81/46 = 0.0176$$
 (1)

energy change =
$$\frac{22.68}{0.0176}$$
 $\Delta H = -1290$ (1)

-ve sign and correct to 3 sf (1)

(c) internet value numerically larger (1)

heat losses / incomplete combustion / thermal capacity of calorimeter ignored (1) no credit for energy loss [2]

(d) (i)
$$C_3H_7OH + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O$$
 (ignore state symbols) [1]

- (ii) negative enthalpy change means energy in bonds broken is less than that in bonds made [1]
- (iii) more bonds broken and made in propanol and therefore more energy released [1]

(e) any 4 from:

both conserve carbon / non-renewable fuel sources / fossil fuels / use renewable sources

(these gas / liquid) suitable for different uses e.g. ethanol to fuel cars

atom economy gasification is less (some C lost as CO_2) / CO_2 produced in gasification is a greenhouse gas

CO is toxic

gasification at high temperature / enzymes need low temperature

enzyme approach therefore saves fuel / gasification needs more energy [4]

3 max if any reference to destruction of ozone layer

QWC

[2]

[3]

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter (1)

Answer has suitable structure (1)

PMT

Q.12 (a) to increase rate of reaction / to increase surface area [1] MgCO₃ + 2HCl \rightarrow MgCl₂ + CO₂ + H₂O (ignore state symbols) (b) [1] (c) rate starts fast and gradually slows (1) because concentration becomes less so fewer collisions (per unit time) / less frequent collisions / lower probability of collisions (1) at time = 17/18 min rate = 0 (1) [3] (d) all the solid would all have disappeared / if more carbonate is added further effervescence is seen [1] volume $CO_2 = 200 \text{ cm}^3$ (1) (e) (i) moles $CO_2 = 200 / 24000 = 0.008333 = moles MgCO_3$ (1) [minimum 2 sf] [2] mass MgCO₃ = $0.008333 \times 84.3 = 0.702$ g (1) (ii) % MgCO₃ = <u>0.702</u> × 100 = 79.0% / 79% [2] 0.889 carbon dioxide is soluble in water / reacts with water (1) (e) volume collected less therefore % / moles of MgCO₃ less (1) [2] (f) use of 40.3 and 84.3 (1) atom economy = $40.3 / 84.3 \times 100 = 47.8\%$ (1) [2] Total [14]

Section B Total [70]